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Abstract—In this paper, we study the burstification effect on 

the TCP synchronization and TCP congestion window 
mechanism. It is shown that short assembly times are optimal for 
flows with similar characteristics, while large assembly time 
provide a higher notion of fairness. In addition, this paper 
analyzes the synchronization of multiple TCP flows when 
aggregated together over the same optical bursts. It is shown that 
there is a strong TCP synchronization effect upon burst losses, in 
the sense that flows’ windows increase/decrease simultaneously, 
resulting to a significant variation of outgoing traffic. These 
deficiencies may be dealt with employing a multi-queue burst 
assembly scheme with different timers and taking into account 
the TCP dynamics. 

 
Index Terms— Burst Switching, Transport Control Protocol, 

synchronization, congestion window. 

I. INTRODUCTION 
CP over OBS networks  [1] has been studied in previous 
works  [4]- [7] where it has been observed that the burst 
assembly process at the edge nodes has a significant 

impact on the end-to-end performance of TCP, mainly because 
it introduces an unpredictable delay, that challenges the 
window mechanism used by TCP protocol for congestion 
control. A useful insight on TCP traffic statistics is given in 
 [8]- [10]. In particular, it was found that short assembly times 
yield a higher throughput to TCP sources primarily because 
they reduce the total end-to-end delay associated with the 
round trip-time delay. However, short assembly time prohibit 
the fast expansion of the congestion window primarily 
because sources are allows to transmit only a few segments 
per round. Long assembly times, are more efficient especially 
for fast TCP flows  [8], since they allow the transmission of 
multiple segments per burst. However, this throughput gain 
may be canceled by the large burstification delay. 

In this paper, we analyze TCP performance over OBS 
networks  and we particularly analyze the burstification effect 
on the TCP congestion window and on the synchronization of 
many concurrent flows. We argue that the instant congestion 
window is a metric to be considered for increasing TCP 
performance and providing a notion of fairness among the 
individually aggregated flows. In addition, we analyze the 
synchronization effect of multiple concurrent flows. This 
effect has not been in-depth investigated but may lead to 
temporal overloads in the network. For the detailed 

investigation of the above mentioned issues, a dedicated TCP-
over-OBS simulator was developed using the ns-2 tool. The 
ns-2 simulator was modified to efficiently manipulate TCP 
sources and save CPU resources. 
The rest of the paper is organized as follows. Section II 
presents an overview of TCP variants, while Section III 
discusses the burstification effect on the segments/flow 
distribution and respectively on the congestion window 
dynamic. Section IV analyzes the TCP synchronization effect 
and  finally, Section V presents a multi-queue burst assembly 
scheme that can cope with the abovementioned deficiencies.  

II. TRANSPORT CONTROL PROTOCOL VARIANTS  
There are a number of TCP versions, combined with a number 
of different burst assembly schemes. The most interesting are 
Reno, New Reno and SACK. The main differences among 
them are the algorithms that they employ when congestion is 
detected. TCP Reno refers to TCP with Slow Start, Congestion 
Avoidance, Fast Retransmit and Fast Recovery algorithms. 
When Reno starts, it enters the Slow Start phase first with a 
congestion window of one segment size and then exponential 
increase it, upon the acknowledgement of all the packets 
transmitted. When the window reaches a certain threshold of 
w, it enters, the Congestion Avoidance phase, according to 
which the windows is now increasing only by one segment 
after all segments have been acknowledged.  
In TCP Reno, there are two kinds of losses identified; the 
Time Out (TO) and Triple Duplicate (TD) loss. In the Triple 
Duplicate (TD) case, the sender receives three duplicates 
ACKs, that acknowledge a new segment, but not the one with 
the highest sequence number. In that case TCP Reno enters the 
Fast Retransmit phase, and start transmitting the lost 
segments. For every successfully transmission of these 
segments, the sender halves its congestion window by half and 
receives a TD ACK message for the next lost segment in the 
burst. In Reno, the maximum number of recoverable segment 
losses in a congestion window without timeout is limited to 
one or two segments in most cases. In the case of a Time Out 
(TO) loss case, no ACK is received in a certain time period, 
denoted by the expiration of a timer. In that case TCP Reno 
enters the Slot Start phase, and halves its window back to one 
segment size. New TCP Reno is a slight modification 
according to which the sender retransmits one lost segment per 
round-trip-time upon receiving a partial ACK message, 

Burstification effect on the TCP Synchronization and 
Congestion Window mechanism 

Kyriakos G. Vlachos 
Computer Engineering and Informatics Department &  

Research Academic Computer Technology Institute, University of Patras, Rio, Greece  
(Tel: +30 2610 996990, Fax: +30 2610 969 007, email: kvlachos@ceid.upatras.gr) 

T 



 2

without waiting for a TD ACK and without halving its 
window until all lost segments are successfully acknowledged.  
On the other hand, SACK (Selective Acknowledgment) TCP 
implements a different ACK message, where the non-
contiguous set of data that have been received are stored. To 
this end, the sender is aware of the lost packets and which are 
transmitted altogether. In that case the congestion window is 
halved, before linearly increasing again. Detailed SACK 
performance in OBS networks is clearly superior, as shown in 
 [8], since all the segments that were employed in a burst that 
was dropped can be identified and subsequently retransmitted 
at the same round.  
TCP’s performance (e.g., throughput) depends heavily on 
burst assembly time due to the extra delay enforced (denoted 
as burstification delay). Therefore TCP mechanism adjusts its 
window mechanism upon a burst transmission or reception 
and thus timer-based assembly schemes may perform better 
than size-based algorithms. For the timer threshold there could 
exists an optimal values that maximizes throughput 
performance in a TCP over OBS network  [8]. In  [9], it has 
been shown that optimal performance can also be achieved 
with an optimal burst length algorithm, while in  [5], it is 
shown that a dynamic assembly algorithm that adjusts the 
threshold values (e.g., time, burst-length or both) according to 
traffic statistics can achieve even a better performance. In 
what follows we have limited our study to TCP-SACK and 
timer –based burstifiers. 

III. BURSTIFICATION EFFECT ON FLOW AND SEGMENT 
DISTRIBUTION  

Although TCP-SACK implementation and timer-based 
assembly schemes is the most promising combination, very 
few works exist on providing an in-depth analysis of how 
segments, flows distribution over the assembled bursts varies 
with aggregation time. In this section we investigate this and 
derive conclusions for the congestion window evolution. We 
have developed a dedicated TCP-over-OBS simulator using 
ns-2 tool and conducted full-scale experiment on the NSFnet 
topology that consists of 8 edge and 6 core nodes. Each link 
was employing a single wavelength at 10Gbps, while access 
rate was set to 100Mbps equally for all sources. TCP requests 
were modeled with a Poisson arrival process with a λ=50 
flows/sec rate and an exponential inter-arrival time of 
1/µ=10msec, while TCP file size was modeled with a Pareto 
distribution process of p load and a min ON size of 40KByte.  

Using this set of metrics, it was possible to vary the TCP 
arrival rate and/or the mean file size, to obtain measurements 
for different number of simultaneous active TCP flows and 
different loads. In what follows we have selected a mean file 
size of 700KB that corresponded to a 2% burst loss ratio and 
600-800 active sources for a timer-based burstifier of 1-to 
10msec. Using these parameters in the simulation experiments, 
we have measured two basic statistics; the distribution of 
segments and the distribution of TCP flows over the 
assembled bursts. Fig. 1 displays the probability density 
function of (a) the number of segments and (b) the number of 
different TCP flows per transmitted burst for 1, 5 and 10msec 
burstifier. From Fig. 1, it can be seen that the number of 
segments as well as the number of flows per transmitted burst 

increases with the assembly time. From Fig. 1(b) and in the 
case of 1msec time, it can be seen, that the 80% of the 
transmitted bursts employ segments from only 2 different 
sources, while for 5 and 10msec, this increases to 4 and 6 
respectively. It is clear that large aggregation times contribute 
in the transfer of a higher number of sources and segments per 
burst that in turns may lead to smaller completion times, fewer 
bursts generated but with the trade off that more sources will 
be potentially affected upon a burst loss. 

The pdf distribution of segments per burst (see Fig. 1a) 
exhibits sharp increases in certain values. These sharp 
increases are due to the finite access rate in combination with 
the specific burstification time. For example for 1msec 
assembly time, no more than ~13 segments could be added in 
a single burst and thus for 1msec assembly time, a high 
percentage of the bursts (~33%) were filled up with 13 
segments. For 5msec assembly time, this maximum value was 
found to be 13% of the bursts that were carrying up to 61 
segments. Similarly for 10msec, this was shifted to 121 
segments but for only the 7% of the bursts. The reason that 
these maximums of the pdf curves were decreasing with the 
increase of the assembly time can be explained in combination 
with the congestion window size. It was found out that sources 
with a large congestion window were capable of adding more 
segments in the transmitted burst as a result of their higher 
throughput. To this end, in short assembly times almost all 
sources could provide bursts with segments and thus the 
higher percentage of bursts (~33%). In principle however, 
flows with larger congestion windows have a higher 
probability to add more segments, since these sources have 
more unacknowledged segments. This was more evident in 
large assembly time, where flows with short congestion 
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Fig. 1. (a) Segment distribution and (b) number of TCP sources per burst 
(lost, success) for TMAX = 1, 5, 10msec. 
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windows stopped sending data traffic, awaiting for an ACK 
message to arrive after having reached their maximum number 
of unacknowledged segments. In contrast, flows with larger 
congestion windows were continuously filling up the bursts 
with segments. These flows are less in the case of 10msec 
burstifier and thus the small peak in the corresponding pdf 
curve (~7%). This percentage of flows had a congestion 
window that was incomparably higher than the assembly time.  

As a conclusion, we may argue that short assembly times 
service less flows, and carry a significant less number of 
segments. To this end, a high number of flows compete each 
other to transfer their segments and thus some of them will 
exhibit a high throughput and some other a poor one. In  [11], 
it was shown that short assembly time provide optimal 
performance for flows with similar characteristics (same 
congestion window, file size, etc), yielding to a high variance. 
Long assembly time provide a higher notion of fairness since 
they carry more segments from more flows at a time. This 
smoothes out any traffic instabilities in the sense that 
individual throughputs are diluted. However the burstification 
delay that they impose may constrain flow performance 
(smaller throughput), since sources expand their window at a 
significant lower rate. Long assembly time provide a 
throughput gain only when TCP sources have segments to 
transmit (large congestion windows) otherwise they 
unnecessarily delay transmission. 

In order to truly enhance TCP performance, the instant 
congestion window is a metric to be considered for 
determining the optimum assembly time. For example short 
assembly time should be applied to sources with a relative 
short congestion window, while larger delays to sources with 
larger windows. In Section V, such a scheme is presented. 

IV. BURSTIFICATION EFFECT ON TCP SYNCHRONIZATION 
A single TCP source transmits W bytes, that is the size of its 
transmission window, per Round Trip Time (RTT). W 
increases as acknowledgements are received, and decreases 
(halved in practice) when congestion is detected. Thus, W and 
RTT are useful to have an estimation of the bandwidth used by 

a connection, that is ( ) ( )
RTT

tWtX = . When several TCP 
connections share a link, they have to compete for the 
available bandwidth, that is for a position in the assembling 
burst. Each connection, as mentioned previously, increases 
and decreases its bandwidth consumption. Ideally, if 
connections decrease their window at different moments, a 
good usage of the bandwidth can be achieved (see Fig. 2a). 

However, if these moments coincide, the bandwidth usage will 
resemble a saw-tooth profile (See Fig. 2b), with high peaks and 
valleys, not using the bandwidth efficiently. Thus, the effect of 
multiple TCP connections increasing and decreasing the W 
simultaneously is called TCP Synchronization. 
TCP Synchronization is a known problem in packet switched 
networks. Internet routers are provided with buffers to 
accommodate temporarily bursts of traffic without having to 
drop packets. However, when the buffers are full, packets 
have to be drop, and there is a risk of dropping packets of 
multiple flows in a row, synchronizing the flows. In the case 
of packet switched networks, the size of the buffer is also 
important, since large buffers tend to induce synchronization. 
Intelligent queue management schemes, like AQM, can help 
to prevent synchronization. However, it has not been 
investigated in OBS networks, which are quite different form 
current packet switched networks, where synchronization also 
occurs, as we shown below. For example, let us consider there 
are NF TCP flows sharing an OBS edge router and all of them 
have the same RTT. Let us also consider that on average NDF 
different flows are assembled in the same burst. If W(t) is the 
mean window of the TCP flows, a burst drop will result in the 

simultaneous reduction of NDF ( )
2

tW  segments in total. 
We have studied the burstification effect on the flow 
synchronization using ns-2 tool and a simple experimental 
setup. TCP SACK agents were again considered but with CBR 
traffic sources  [12]. A timer-based burst assembler collects the 
TCP segments and then queues them either in a single burst 
(mixed flow (MF) scheme), or in a separate per flow queue 
(per flow (PF) scheme). The different schemes were 
considered for studying how multiple flows synchronize in the 
presence of a burst loss.  
The simulations were carried out by keeping the aggregate 
access bandwidth generated by the NF TCP agent constant and 
varying the number of these agents, so that the greater the 
number of agents the lower the bandwidth of each agent 
bandwidth. TCP agents start their transmission at random time 
between 0 and 50s. The evolution of the congestion window is 
monitored at each TCP agent. The window size is sampled 
every 0.7 seconds during 600 seconds simulation run 
In Fig. 3 and Fig. 4, the aggregated throughput calculated as  
the sum of the congestion windows of all the sources divided 
by RTT is presented for NF =10, 15 and 25 sources in the 
cases of per flow and mixed flow assembly, respectively. As 
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Fig. 3. Aggregated throughput of TCP flows over 600 ms simulation run for 
per flow assembly, varying the number of TCP flows, Nf. 
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the sampled congestion window can be considered as an 
estimation of aggregate throughput of our scenario. If there 
were no synchronization, the aggregate throughput of different 
sources would exhibit a nearly flat profile as shown in Fig. 3 
for the per flow strategy. In case of synchronization, the 
profile is expected to have a saw tooth appearance, as shown 
in Fig. 4 for mixed flow assembly, where the aggregated 
sending rate abruptly drops when burst drop occurs. This 
instability is due to the fact that multiple flows and multiple 
segments per flow are present in the dropped bursts and cause 
several agents to decrease the value of their transmission 
window simultaneously. 
Also, when the number of flows increases, the fluctuations are 
more evident. In fact, as a consequence of the assumption of 
constant aggregated access bandwidth, the single source rate 
decreases as the number of flow increases and this involves 
that each TCP agent is able to send less segments in the same 
burst. At the same time, during the same assembly time out, 
the mean of different flows in the same burst was higher. 

V. MULTI QUEUE BURST ASSEMBLY SCHEME 
Based on the above analysis, it is clear that a constant timer-
based burstifier is not appropriate for TCP over OBS 
networks. It yields sub-optimal performance and temporarily 
overloads the network due to flow synchronization. In order to 
truly enhance TCP performance, we propose a multi-queue 
burst assembler, where flows are allocated dynamically to 
different queues. For example each burstifier may employ 
three different assembly queues with different assembly 
timers, for sources with small, medium or large congestion 
windows. The following algorithm is an example of how flow 
window can be taken into account in the assembly process. 

10
<5
<1

=
  windowcongestion  ≤Cifmsec

  segmentsC  windowcongestion  ≤Bifmsec
 segmentsB   windowcongestion   ≤1ifmsec

T
 

B,C parameters determine when each flow will move from one 
to another queue. For example, flows that are in a slow start 
phase and have a congestion window of less that B segments 
are aggregated together under 1msec delay. When their 
congestion windows reach the limit of B segments, then these 
flows are upgraded to medium rate flows and their segments 
are assembled under a 5msec delay. In this way each flow is 
treated separately and thus upon a burst loss only the flows 
that will suffer from a data loss will be downgraded to shorter 

assembly times. The implementation of this assembly scheme 
requires the communication of the window size to the 
burstifier. This can be implemented i.e. by incorporating this 
information in the TCP header in a future TCP modification.  
In order to validate the performance of this scheme, we have 
measured the yielding throughput (average throughput of all 
flows at a single edge node) as well as its variance for various 
B, C values. As mentioned previously, variance reveals how 
fair is bandwidth distributed to individual flows, especially in 
the case that no QoS scheme is applied. Fig. 5a displays the 
average throughput versus parameter C, for two different B 
values; namely for B=16 and 32segments. It can be seen that 
the highest gains in throughout are noted when C parameter is 
fourfold times the B value. For example the “B=16” curve 
exhibits a maximum of 10.7Mbps for “C=64”, while the 
“B=32” curve (corresponding throughput 9.86Mbps) for 
“C=128”. For higher values of C (>256), the performance of 
the system resembles the case of having two only queues. This 
is because TCP windows do not always reach such a large size 
due to segment losses. Similarly for higher B values (>32), the 
system performance approximates that of the static case, that 
is having a single queue with 1msec burstifier, while for 
smaller B values (<16), the static cases of 5msec. 
With respect to Fig. 5 (b), variance is continuously decreasing 
with the increase of C parameter as expected.. It must be noted 
however, that for the particular case of “B=16” and “C=64” 
that exhibited the highest throughput, variation has been 
significantly decreased to only 51, as opposed to 60 or 70, in 
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Fig. 4. Aggregated throughput of TCP flows over 600 ms simulation run for 
mix flow assembly, varying the number of TCP flows, Nf.   
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the case of a single queue burstifier with 1 and 5msec 
assembly time  [11]. It must be noted here that other individual 
flows’ characteristics such as size, arrival rate may also affect 
the yielding results, but we may argue that this combination of 
B,C values merges best the performance advantages of long 
and short assembly times and can support an average 
throughput of 10.3Mbps with a variance as low as 51. 

We have also exploited the multi queue burst assembly 
scheme to weaken the synchronization effect. In particular, we 
modified the scheme so that not always the same flows being 
aggregated together. In other words incoming flows are 
divided to more than one queue with equal probabilities for 
the whole assembly period, keeping the flows per queue 
constant and equal to each other. In the simple case of 
employing two queues per burstifier and 21pp 2 ==1  is 
the probability a flow is assigned to any of these two, then the 
probability of k flow to be assigned the first queue is: 

1p if k is even and 11 p- if k  is odd. Similarly the 

probabilities for the second queue are 11 p-  and 1p   if k  is 

even or odd respectively. Thus, first queue will employ 2k  

flows if k is even (with probability p1) or 
2

1+k
if k is odd.- 

The effectiveness of this scheme has been evaluated through 
simulations using ns-2 tool  [12]. Allocation of flows to queues 
was initiated with the arrival of the first segment of each flow 
and was kept constant per aggregation cycle. It is then 
reinstate again. Fig. 6 displays the synchronization effect 
(number of data on the outgoing link). It can be seen that 
synchronization has been indeed decreased and we may argue 
that the random distribution of different flows to different 
queues desynchronize segment transmission of flows.  
In the results shown in Fig. 6, the standard deviation has been 
reduced by 37% in the case of two-queues and 40% in the case 
of four queues. 

VI. CONCLUSIONS 
In this paper, we have presented the burstification effect of 
timer-based algorithms on the synchronization of flows as 
well as on the TCP congestion window evolution. It has been 
shown that short assembly time may provide a higher 
throughput but do not fairly share outgoing capacity between 
the aggregated flows and thus resulting in a high variance of 
performance. In contrast long assembly time dilute individual 
flows and provide a higher notion of fairness. In addition, it 
has been shown that burst losses in combination with the flow 
competence for the available bandwidth results in the 
synchronization of flows’ congestion windows. The latter may 
lead to temporal overloads that cannot be accommodated by 
the network capacity.  
Cleary, it has been shown that a multi-queue burst assembly 
scheme, can be beneficial for both deficiencies and truly 
enhance TCP performance. In particular, it is shown that when 
flows are dynamically assigned to different burst queues 
synchronization decreases. Similarly, when congestion 
window is considered as the assembly criterion in a 

such a multi-queue system, it may truly enhance TCP 
performance.  
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Fig. 6. Flow synchronization employing a dynamic flow allocation algorithm 
to one and  four burst assembly queues. 


