
 1

Abstract—In this paper, we study the burstification effect on

the TCP synchronization and TCP congestion window
mechanism. It is shown that short assembly times are optimal for
flows with similar characteristics, while large assembly time
provide a higher notion of fairness. In addition, this paper
analyzes the synchronization of multiple TCP flows when
aggregated together over the same optical bursts. It is shown that
there is a strong TCP synchronization effect upon burst losses, in
the sense that flows’ windows increase/decrease simultaneously,
resulting to a significant variation of outgoing traffic. These
deficiencies may be dealt with employing a multi-queue burst
assembly scheme with different timers and taking into account
the TCP dynamics.

Index Terms— Burst Switching, Transport Control Protocol,

synchronization, congestion window.

I. INTRODUCTION
CP over OBS networks [1] has been studied in previous
works [4]- [7] where it has been observed that the burst
assembly process at the edge nodes has a significant

impact on the end-to-end performance of TCP, mainly because
it introduces an unpredictable delay, that challenges the
window mechanism used by TCP protocol for congestion
control. A useful insight on TCP traffic statistics is given in
 [8]- [10]. In particular, it was found that short assembly times
yield a higher throughput to TCP sources primarily because
they reduce the total end-to-end delay associated with the
round trip-time delay. However, short assembly time prohibit
the fast expansion of the congestion window primarily
because sources are allows to transmit only a few segments
per round. Long assembly times, are more efficient especially
for fast TCP flows [8], since they allow the transmission of
multiple segments per burst. However, this throughput gain
may be canceled by the large burstification delay.

In this paper, we analyze TCP performance over OBS
networks and we particularly analyze the burstification effect
on the TCP congestion window and on the synchronization of
many concurrent flows. We argue that the instant congestion
window is a metric to be considered for increasing TCP
performance and providing a notion of fairness among the
individually aggregated flows. In addition, we analyze the
synchronization effect of multiple concurrent flows. This
effect has not been in-depth investigated but may lead to
temporal overloads in the network. For the detailed

investigation of the above mentioned issues, a dedicated TCP-
over-OBS simulator was developed using the ns-2 tool. The
ns-2 simulator was modified to efficiently manipulate TCP
sources and save CPU resources.
The rest of the paper is organized as follows. Section II
presents an overview of TCP variants, while Section III
discusses the burstification effect on the segments/flow
distribution and respectively on the congestion window
dynamic. Section IV analyzes the TCP synchronization effect
and finally, Section V presents a multi-queue burst assembly
scheme that can cope with the abovementioned deficiencies.

II. TRANSPORT CONTROL PROTOCOL VARIANTS
There are a number of TCP versions, combined with a number
of different burst assembly schemes. The most interesting are
Reno, New Reno and SACK. The main differences among
them are the algorithms that they employ when congestion is
detected. TCP Reno refers to TCP with Slow Start, Congestion
Avoidance, Fast Retransmit and Fast Recovery algorithms.
When Reno starts, it enters the Slow Start phase first with a
congestion window of one segment size and then exponential
increase it, upon the acknowledgement of all the packets
transmitted. When the window reaches a certain threshold of
w, it enters, the Congestion Avoidance phase, according to
which the windows is now increasing only by one segment
after all segments have been acknowledged.
In TCP Reno, there are two kinds of losses identified; the
Time Out (TO) and Triple Duplicate (TD) loss. In the Triple
Duplicate (TD) case, the sender receives three duplicates
ACKs, that acknowledge a new segment, but not the one with
the highest sequence number. In that case TCP Reno enters the
Fast Retransmit phase, and start transmitting the lost
segments. For every successfully transmission of these
segments, the sender halves its congestion window by half and
receives a TD ACK message for the next lost segment in the
burst. In Reno, the maximum number of recoverable segment
losses in a congestion window without timeout is limited to
one or two segments in most cases. In the case of a Time Out
(TO) loss case, no ACK is received in a certain time period,
denoted by the expiration of a timer. In that case TCP Reno
enters the Slot Start phase, and halves its window back to one
segment size. New TCP Reno is a slight modification
according to which the sender retransmits one lost segment per
round-trip-time upon receiving a partial ACK message,

Burstification effect on the TCP Synchronization and
Congestion Window mechanism

Kyriakos G. Vlachos
Computer Engineering and Informatics Department &

Research Academic Computer Technology Institute, University of Patras, Rio, Greece
(Tel: +30 2610 996990, Fax: +30 2610 969 007, email: kvlachos@ceid.upatras.gr)

T

 2

without waiting for a TD ACK and without halving its
window until all lost segments are successfully acknowledged.
On the other hand, SACK (Selective Acknowledgment) TCP
implements a different ACK message, where the non-
contiguous set of data that have been received are stored. To
this end, the sender is aware of the lost packets and which are
transmitted altogether. In that case the congestion window is
halved, before linearly increasing again. Detailed SACK
performance in OBS networks is clearly superior, as shown in
 [8], since all the segments that were employed in a burst that
was dropped can be identified and subsequently retransmitted
at the same round.
TCP’s performance (e.g., throughput) depends heavily on
burst assembly time due to the extra delay enforced (denoted
as burstification delay). Therefore TCP mechanism adjusts its
window mechanism upon a burst transmission or reception
and thus timer-based assembly schemes may perform better
than size-based algorithms. For the timer threshold there could
exists an optimal values that maximizes throughput
performance in a TCP over OBS network [8]. In [9], it has
been shown that optimal performance can also be achieved
with an optimal burst length algorithm, while in [5], it is
shown that a dynamic assembly algorithm that adjusts the
threshold values (e.g., time, burst-length or both) according to
traffic statistics can achieve even a better performance. In
what follows we have limited our study to TCP-SACK and
timer –based burstifiers.

III. BURSTIFICATION EFFECT ON FLOW AND SEGMENT
DISTRIBUTION

Although TCP-SACK implementation and timer-based
assembly schemes is the most promising combination, very
few works exist on providing an in-depth analysis of how
segments, flows distribution over the assembled bursts varies
with aggregation time. In this section we investigate this and
derive conclusions for the congestion window evolution. We
have developed a dedicated TCP-over-OBS simulator using
ns-2 tool and conducted full-scale experiment on the NSFnet
topology that consists of 8 edge and 6 core nodes. Each link
was employing a single wavelength at 10Gbps, while access
rate was set to 100Mbps equally for all sources. TCP requests
were modeled with a Poisson arrival process with a λ=50
flows/sec rate and an exponential inter-arrival time of
1/µ=10msec, while TCP file size was modeled with a Pareto
distribution process of p load and a min ON size of 40KByte.

Using this set of metrics, it was possible to vary the TCP
arrival rate and/or the mean file size, to obtain measurements
for different number of simultaneous active TCP flows and
different loads. In what follows we have selected a mean file
size of 700KB that corresponded to a 2% burst loss ratio and
600-800 active sources for a timer-based burstifier of 1-to
10msec. Using these parameters in the simulation experiments,
we have measured two basic statistics; the distribution of
segments and the distribution of TCP flows over the
assembled bursts. Fig. 1 displays the probability density
function of (a) the number of segments and (b) the number of
different TCP flows per transmitted burst for 1, 5 and 10msec
burstifier. From Fig. 1, it can be seen that the number of
segments as well as the number of flows per transmitted burst

increases with the assembly time. From Fig. 1(b) and in the
case of 1msec time, it can be seen, that the 80% of the
transmitted bursts employ segments from only 2 different
sources, while for 5 and 10msec, this increases to 4 and 6
respectively. It is clear that large aggregation times contribute
in the transfer of a higher number of sources and segments per
burst that in turns may lead to smaller completion times, fewer
bursts generated but with the trade off that more sources will
be potentially affected upon a burst loss.

The pdf distribution of segments per burst (see Fig. 1a)
exhibits sharp increases in certain values. These sharp
increases are due to the finite access rate in combination with
the specific burstification time. For example for 1msec
assembly time, no more than ~13 segments could be added in
a single burst and thus for 1msec assembly time, a high
percentage of the bursts (~33%) were filled up with 13
segments. For 5msec assembly time, this maximum value was
found to be 13% of the bursts that were carrying up to 61
segments. Similarly for 10msec, this was shifted to 121
segments but for only the 7% of the bursts. The reason that
these maximums of the pdf curves were decreasing with the
increase of the assembly time can be explained in combination
with the congestion window size. It was found out that sources
with a large congestion window were capable of adding more
segments in the transmitted burst as a result of their higher
throughput. To this end, in short assembly times almost all
sources could provide bursts with segments and thus the
higher percentage of bursts (~33%). In principle however,
flows with larger congestion windows have a higher
probability to add more segments, since these sources have
more unacknowledged segments. This was more evident in
large assembly time, where flows with short congestion

0

0,1

0,2

0,3

0,4

0,5

0 10 20 30 40
sessions per burst

%
bu

rs
ts

 (p
df

)

Tmax=1ms
Tmax=5ms
Tmax=10ms

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 25 50 75 100 125 150
source segments per burst

%
so

ur
ce

s
(p

df
)

T=1msec
T=5msec
T=10msec

Fig. 1. (a) Segment distribution and (b) number of TCP sources per burst
(lost, success) for TMAX = 1, 5, 10msec.

(a)

(b)

 3

windows stopped sending data traffic, awaiting for an ACK
message to arrive after having reached their maximum number
of unacknowledged segments. In contrast, flows with larger
congestion windows were continuously filling up the bursts
with segments. These flows are less in the case of 10msec
burstifier and thus the small peak in the corresponding pdf
curve (~7%). This percentage of flows had a congestion
window that was incomparably higher than the assembly time.

As a conclusion, we may argue that short assembly times
service less flows, and carry a significant less number of
segments. To this end, a high number of flows compete each
other to transfer their segments and thus some of them will
exhibit a high throughput and some other a poor one. In [11],
it was shown that short assembly time provide optimal
performance for flows with similar characteristics (same
congestion window, file size, etc), yielding to a high variance.
Long assembly time provide a higher notion of fairness since
they carry more segments from more flows at a time. This
smoothes out any traffic instabilities in the sense that
individual throughputs are diluted. However the burstification
delay that they impose may constrain flow performance
(smaller throughput), since sources expand their window at a
significant lower rate. Long assembly time provide a
throughput gain only when TCP sources have segments to
transmit (large congestion windows) otherwise they
unnecessarily delay transmission.

In order to truly enhance TCP performance, the instant
congestion window is a metric to be considered for
determining the optimum assembly time. For example short
assembly time should be applied to sources with a relative
short congestion window, while larger delays to sources with
larger windows. In Section V, such a scheme is presented.

IV. BURSTIFICATION EFFECT ON TCP SYNCHRONIZATION
A single TCP source transmits W bytes, that is the size of its
transmission window, per Round Trip Time (RTT). W
increases as acknowledgements are received, and decreases
(halved in practice) when congestion is detected. Thus, W and
RTT are useful to have an estimation of the bandwidth used by

a connection, that is () ()
RTT

tWtX = . When several TCP
connections share a link, they have to compete for the
available bandwidth, that is for a position in the assembling
burst. Each connection, as mentioned previously, increases
and decreases its bandwidth consumption. Ideally, if
connections decrease their window at different moments, a
good usage of the bandwidth can be achieved (see Fig. 2a).

However, if these moments coincide, the bandwidth usage will
resemble a saw-tooth profile (See Fig. 2b), with high peaks and
valleys, not using the bandwidth efficiently. Thus, the effect of
multiple TCP connections increasing and decreasing the W
simultaneously is called TCP Synchronization.
TCP Synchronization is a known problem in packet switched
networks. Internet routers are provided with buffers to
accommodate temporarily bursts of traffic without having to
drop packets. However, when the buffers are full, packets
have to be drop, and there is a risk of dropping packets of
multiple flows in a row, synchronizing the flows. In the case
of packet switched networks, the size of the buffer is also
important, since large buffers tend to induce synchronization.
Intelligent queue management schemes, like AQM, can help
to prevent synchronization. However, it has not been
investigated in OBS networks, which are quite different form
current packet switched networks, where synchronization also
occurs, as we shown below. For example, let us consider there
are NF TCP flows sharing an OBS edge router and all of them
have the same RTT. Let us also consider that on average NDF
different flows are assembled in the same burst. If W(t) is the
mean window of the TCP flows, a burst drop will result in the

simultaneous reduction of NDF ()
2

tW segments in total.
We have studied the burstification effect on the flow
synchronization using ns-2 tool and a simple experimental
setup. TCP SACK agents were again considered but with CBR
traffic sources [12]. A timer-based burst assembler collects the
TCP segments and then queues them either in a single burst
(mixed flow (MF) scheme), or in a separate per flow queue
(per flow (PF) scheme). The different schemes were
considered for studying how multiple flows synchronize in the
presence of a burst loss.
The simulations were carried out by keeping the aggregate
access bandwidth generated by the NF TCP agent constant and
varying the number of these agents, so that the greater the
number of agents the lower the bandwidth of each agent
bandwidth. TCP agents start their transmission at random time
between 0 and 50s. The evolution of the congestion window is
monitored at each TCP agent. The window size is sampled
every 0.7 seconds during 600 seconds simulation run
In Fig. 3 and Fig. 4, the aggregated throughput calculated as
the sum of the congestion windows of all the sources divided
by RTT is presented for NF =10, 15 and 25 sources in the
cases of per flow and mixed flow assembly, respectively. As

2.00+06

1.50+06

1.00+06

 0 100 200 300 400 500 600

ag
gr

eg
at

e
th

ro
ug

hp
ut

 (b
yt

es
/s

ec
)

simulation time (sec)

10
15
25

Fig. 3. Aggregated throughput of TCP flows over 600 ms simulation run for
per flow assembly, varying the number of TCP flows, Nf.

100 200 300 400 500
(a)

(b)

Fig. 2. Sum of the bandwidth used by four TCP flows (a) No synchronized
TCP flows (b) Synchronized TCP flows

 4

the sampled congestion window can be considered as an
estimation of aggregate throughput of our scenario. If there
were no synchronization, the aggregate throughput of different
sources would exhibit a nearly flat profile as shown in Fig. 3
for the per flow strategy. In case of synchronization, the
profile is expected to have a saw tooth appearance, as shown
in Fig. 4 for mixed flow assembly, where the aggregated
sending rate abruptly drops when burst drop occurs. This
instability is due to the fact that multiple flows and multiple
segments per flow are present in the dropped bursts and cause
several agents to decrease the value of their transmission
window simultaneously.
Also, when the number of flows increases, the fluctuations are
more evident. In fact, as a consequence of the assumption of
constant aggregated access bandwidth, the single source rate
decreases as the number of flow increases and this involves
that each TCP agent is able to send less segments in the same
burst. At the same time, during the same assembly time out,
the mean of different flows in the same burst was higher.

V. MULTI QUEUE BURST ASSEMBLY SCHEME
Based on the above analysis, it is clear that a constant timer-
based burstifier is not appropriate for TCP over OBS
networks. It yields sub-optimal performance and temporarily
overloads the network due to flow synchronization. In order to
truly enhance TCP performance, we propose a multi-queue
burst assembler, where flows are allocated dynamically to
different queues. For example each burstifier may employ
three different assembly queues with different assembly
timers, for sources with small, medium or large congestion
windows. The following algorithm is an example of how flow
window can be taken into account in the assembly process.

10
<5
<1

=
 windowcongestion ≤Cifmsec

 segmentsC windowcongestion ≤Bifmsec
 segmentsB windowcongestion ≤1ifmsec

T

B,C parameters determine when each flow will move from one
to another queue. For example, flows that are in a slow start
phase and have a congestion window of less that B segments
are aggregated together under 1msec delay. When their
congestion windows reach the limit of B segments, then these
flows are upgraded to medium rate flows and their segments
are assembled under a 5msec delay. In this way each flow is
treated separately and thus upon a burst loss only the flows
that will suffer from a data loss will be downgraded to shorter

assembly times. The implementation of this assembly scheme
requires the communication of the window size to the
burstifier. This can be implemented i.e. by incorporating this
information in the TCP header in a future TCP modification.
In order to validate the performance of this scheme, we have
measured the yielding throughput (average throughput of all
flows at a single edge node) as well as its variance for various
B, C values. As mentioned previously, variance reveals how
fair is bandwidth distributed to individual flows, especially in
the case that no QoS scheme is applied. Fig. 5a displays the
average throughput versus parameter C, for two different B
values; namely for B=16 and 32segments. It can be seen that
the highest gains in throughout are noted when C parameter is
fourfold times the B value. For example the “B=16” curve
exhibits a maximum of 10.7Mbps for “C=64”, while the
“B=32” curve (corresponding throughput 9.86Mbps) for
“C=128”. For higher values of C (>256), the performance of
the system resembles the case of having two only queues. This
is because TCP windows do not always reach such a large size
due to segment losses. Similarly for higher B values (>32), the
system performance approximates that of the static case, that
is having a single queue with 1msec burstifier, while for
smaller B values (<16), the static cases of 5msec.
With respect to Fig. 5 (b), variance is continuously decreasing
with the increase of C parameter as expected.. It must be noted
however, that for the particular case of “B=16” and “C=64”
that exhibited the highest throughput, variation has been
significantly decreased to only 51, as opposed to 60 or 70, in

2.00+06

1.50+06

1.00+06

 0 100 200 300 400 500 600

ag
gr

eg
at

e
th

ro
ug

hp
ut

 (b
yt

es
/s

ec
)

simulation time (sec)

10
15
25

Fig. 4. Aggregated throughput of TCP flows over 600 ms simulation run for
mix flow assembly, varying the number of TCP flows, Nf.

7

8

9

10

11

0 256 512 768 1024
Parameter C (Number of Segments)

A
ve

ra
ge

 T
hr

ou
gh

ou
t (

M
bp

s) B=16

B=32

30

40

50

60

70

0 128 256 384 512
Parameter C (Number of Segments)

Th
ro

ug
hp

ut
 V

ar
ia

tio
n

B=16
B=32

Fig. 5. (a) Average throughput and (b) variance of all flows aggregated at a
single node and heading for the same destination for various combination of
B and C values.

(a)

(b)

 5

the case of a single queue burstifier with 1 and 5msec
assembly time [11]. It must be noted here that other individual
flows’ characteristics such as size, arrival rate may also affect
the yielding results, but we may argue that this combination of
B,C values merges best the performance advantages of long
and short assembly times and can support an average
throughput of 10.3Mbps with a variance as low as 51.

We have also exploited the multi queue burst assembly
scheme to weaken the synchronization effect. In particular, we
modified the scheme so that not always the same flows being
aggregated together. In other words incoming flows are
divided to more than one queue with equal probabilities for
the whole assembly period, keeping the flows per queue
constant and equal to each other. In the simple case of
employing two queues per burstifier and 21pp 2 ==1 is
the probability a flow is assigned to any of these two, then the
probability of k flow to be assigned the first queue is:

1p if k is even and 11 p- if k is odd. Similarly the

probabilities for the second queue are 11 p- and 1p if k is

even or odd respectively. Thus, first queue will employ 2k

flows if k is even (with probability p1) or
2

1+k
if k is odd.-

The effectiveness of this scheme has been evaluated through
simulations using ns-2 tool [12]. Allocation of flows to queues
was initiated with the arrival of the first segment of each flow
and was kept constant per aggregation cycle. It is then
reinstate again. Fig. 6 displays the synchronization effect
(number of data on the outgoing link). It can be seen that
synchronization has been indeed decreased and we may argue
that the random distribution of different flows to different
queues desynchronize segment transmission of flows.
In the results shown in Fig. 6, the standard deviation has been
reduced by 37% in the case of two-queues and 40% in the case
of four queues.

VI. CONCLUSIONS
In this paper, we have presented the burstification effect of
timer-based algorithms on the synchronization of flows as
well as on the TCP congestion window evolution. It has been
shown that short assembly time may provide a higher
throughput but do not fairly share outgoing capacity between
the aggregated flows and thus resulting in a high variance of
performance. In contrast long assembly time dilute individual
flows and provide a higher notion of fairness. In addition, it
has been shown that burst losses in combination with the flow
competence for the available bandwidth results in the
synchronization of flows’ congestion windows. The latter may
lead to temporal overloads that cannot be accommodated by
the network capacity.
Cleary, it has been shown that a multi-queue burst assembly
scheme, can be beneficial for both deficiencies and truly
enhance TCP performance. In particular, it is shown that when
flows are dynamically assigned to different burst queues
synchronization decreases. Similarly, when congestion
window is considered as the assembly criterion in a

such a multi-queue system, it may truly enhance TCP
performance.

VII. ACKNOWLEDGEMENTS
This work has been supported by European Commission
through the NoE E-Photon/ONe+ project via the Joint Project
on Optical Burst Switching (JP-B). The author would like to
thank his colleagues Carla Raffaelli and Óscar González de
Dios for their collaboration on this work.

VIII. REFERENCES
[1] C. Qiao and M. Yoo, “Optical burst switching (OBS)-A new paradigm

for an optical internet,” J. High Speed Networks, vol. 8, no. 1, pp. 69–
84, 1999.

[2] X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled
burst traffic in optical burst switched networks,” in Proc. Opticomm,
2002, pp. 149–159.

[3] Cao, X., Y. Chen, J. Li, and Qiao, C. (2002). IEEE Globecom 2002, 3,
2808 – 2812.

[4] M. Casoni, E. Luppi and M. Merani, “Impact of Assembly Algorithms
on End-to-End Performance in Optical Burst Switched Networks with
Different QoS Classes”. In Proc. of Workshop on Optical Burst
Switching (WOBS).

[5] X. Cao, J. Li, Y. Chen, and C. Qiao, “Assembling TCP/IP packets in
optical burst switched networks” in Proc. IEEE GLOBECOM, vol. 3,
Nov. 2002, pp. 2808–2812.

[6] S. Malik and U. Killat, “Impact of burst aggregation time on
performance in optical burst switching networks”, in Proc. Optical
Network Design and Modelling (ONDM-2005), 2005.

[7] A. Detti and M. Listanti, "Impact of segments aggregation on TCP Reno
flows in optical burst switching networks", in Proc. IEEE, INFOCOM
2002.

[8] Xiang Yu et al. “Traffic statistics and performance evaluation in optical
burst switched networks”, Journal of Lightwave Technology, vol. 22,
no. 12, pp. 2722 – 2738, Dec. 2004.

[9] V. Vokkarane, K. Haridoss, and J.P. Jue, “Threshold-based burst
assembly policies for QoS support in optical burst-switched networks”.
In Proceeding of Opticomm, pages 125-136, 2002.

[10] Óscar González de Dios, Ignacio de Miguel, Víctor López,
“Performance evaluation of TCP over OBS considering background
traffic” in Proceedings of ONDM 2005.

[11] K. Ramantas, K. Vlachos, Ó. González de Dios and C. Raffaelli, “TCP
traffic analysis for timer-based burstifiers in OBS networks” in
proceeding of ONDM 2007.

[12] Oscar González, Anna Maria Guidotti, Carla Raffaelli, Kostas Ramantas
and Kyriakos Vlachos, “On the Synchronization effect of TCP flows in
OBS networks”, submitted to IEEE Globecom 2007 conference.

1.20+06

1.00+06

8.00+05

6.00+05

4.00+05

2.00+05

 0 50 100 150 200

by
te

s
se

nt

simulation time (s)

1-queue
4-queue

Fig. 6. Flow synchronization employing a dynamic flow allocation algorithm
to one and four burst assembly queues.

